Paradigma augmented reality dalam pelatihan olahraga: studi konseptual tentang cognitive load theory

Abstract

Revolusi digital secara radikal mengubah cara atlet mempersiapkan diri, dan Augmented Reality (AR) merupakan alat terpenting dalam perubahan ini.  teoretis ini mengeksplorasi penerapan augmented reality (AR) dalam pelatihan olahraga, dengan menggunakan Teori Beban Kognitif (CLT) sebagai kerangka kerja untuk menilai dampaknya terhadap beban mental atlet.  Evaluasi sistematis terhadap literatur menunjukkan bahwa AR memiliki kemampuan unik untuk mengoptimalkan beban kognitif.  Ia secara efisien mengurangi stres mental yang tidak perlu dengan mengubah instruksi yang rumit menjadi petunjuk visual yang mudah dipahami dan terintegrasi secara spasial, yang menghilangkan efek “split-attention”.  Di sisi lain, AR meningkatkan beban kognitif yang relevan, yaitu upaya mental yang diperlukan untuk pembelajaran mendalam, dengan memberikan umpan balik real-time dan simulasi visual yang membantu membangun skema motorik yang kuat. Misalnya, dalam angkat beban, Anda dapat menggunakan visualisasi gerakan interaktif untuk membantu mengangkat beban. Dalam senam, dapat menggunakannya untuk memperbaiki postur secara langsung.  Namun, masih ada masalah yang perlu diselesaikan, seperti risiko antarmuka yang buruk memperburuk kekacauan kognitif, biaya infrastruktur yang tinggi, dan kebutuhan pengguna untuk beradaptasi. Kami menyimpulkan bahwa integrasi strategis AR dan CLT menyediakan kerangka kerja yang kokoh untuk menciptakan lingkungan pelatihan yang adaptif dan berbasis bukti. Sinergi ini menjanjikan tidak hanya mempercepat proses menguasai kemampuan motorik yang kompleks, tetapi juga membuat jalur menuju performa atletik puncak lebih efisien dan berkelanjutan.

References
  1. Abo-Zahhad, M. et al. (2025). Development of an ai-powered ar glasses system for real-time first aid guidance in emergency situations. BioData Mining, 18(1). https://doi.org/10.1186/s13040-025-00473-6
  2. Adams, K. et al. (2019). From the field of play to the laboratory: Recreating the demands of competition with augmented reality simulated sport. Journal of Sports Sciences, 38(5), 486-493. https://doi.org/10.1080/02640414.2019.1706872
  3. Altmeyer, K. et al. (2020). The use of augmented reality to foster conceptual knowledge acquisition in stem laboratory courses—theoretical background and empirical results. British Journal of Educational Technology, 51(3), 611-628. https://doi.org/10.1111/bjet.12900
  4. Altmeyer, M. et al. (2021). A long-term investigation on the effects of (personalized) gamification on course participation in a gym. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2107.12597
  5. Andrade, J., Huang, W. D., and Bohn, D. M. (2015). The impact of instructional design on college students’ cognitive load and learning outcomes in a large food science and human nutrition course. Journal of Food Science Education, 14(4), 127-135. https://doi.org/10.1111/1541-4329.12067
  6. Arzehgar, A. et al. (2025). Sensor-based technologies for motion analysis in sports injuries: A scoping review. BMC Sports Science, Medicine and Rehabilitation, 17(1). https://doi.org/10.1186/s13102-025-01063-z
  7. Athanasopoulos, P. (2023). Cognitive dissonance or p-prims? towards identifying the best way to overcome misconceptions in physics. arXiv. https://doi.org/10.48550/arxiv.2308.15601
  8. Banerjee, S., and Rao, N. J. (2022). Analysis of learner independent variables for estimating assessment items difficulty level. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2206.04416
  9. Bautista, L. (2019). A model-based method for cognitive user interface design for skills training in an augmented reality environment. Proceedings of the IX Latin American Conference on Human Computer Interaction, 1-4. https://doi.org/10.1145/3358961.3358988
  10. Baxter, K. A., Sachdeva, N., and Baker, S. (2025). The application of cognitive load theory to the design of health and behavior change programs: Principles and recommendations. Health Education & Behavior, 52(4), 469-477. https://doi.org/10.1177/10901981251327185
  11. Binoy, A., and Srivastava, A. (2020). Pump fit: An augmented reality application which helps people with their workout more efficiently. Companion Proceedings of the 2020 Conference on Interactive Surfaces and Spaces, 91-93. https://doi.org/10.1145/3380867.3426221
  12. Bright, J., Chen, Y., and Zelek, J. (2023). Mitigating motion blur for robust 3d baseball player pose modeling for pitch analysis. arXiv. https://doi.org/10.48550/arxiv.2309.01010
  13. Chandio, Y. et al. (2023). Investigating the correlation between presence and reaction time in mixed reality. arXiv. https://doi.org/10.48550/arxiv.2309.11662
  14. Chang, K. et al. (2019). Applying augmented reality in physical education on motor skills learning. Interactive Learning Environments, 28(6), 685-697. https://doi.org/10.1080/10494820.2019.1636073
  15. Chen, S., and Yang, R. R. (2020). Pose trainer: Correcting exercise posture using pose estimation. arXiv. https://doi.org/10.48550/arxiv.2006.11718
  16. Cieślńiski, W. B. et al. (2016). Application of the augmented reality in prototyping the educational simulator in sport - the example of judo. Journal of Physics: Conference Series, 710, 012016. https://doi.org/10.1088/1742-6596/710/1/012016
  17. Cordeiro, M. C., Catháin, C. Ó., and Rodrigues, T. B. (2022). The development of a machine learning/augmented reality immersive training system for performance monitoring in athletes. Proceedings of the 14th International Workshop on Immersive Mixed and Virtual Environment Systems, 19-22. https://doi.org/10.1145/3534086.3534332
  18. Dichev, C., Dicheva, D., and Irwin, K. (2020). Gamifying learning for learners. International Journal of Educational Technology in Higher Education, 17(1). https://doi.org/10.1186/s41239-020-00231-0
  19. Ding, R. et al. (2022). Distinguishing conceptions of multiplicative reasoning in chinese elementary students: What sense correct and incorrect solutions might make to them?. Asian Journal for Mathematics Education, 1(2), 242-262. https://doi.org/10.1177/27527263221110629
  20. Endsley, T. C. et al. (2017). Augmented reality design heuristics: Designing for dynamic interactions. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61(1), 2100-2104. https://doi.org/10.1177/1541931213602007
  21. Parte, L., Garvey, A. M., and Gonzalo-Angulo, J. A. (2018). Cognitive load theory: Why it’s important for international business teaching and financial reporting. Journal of Teaching in International Business, 29(2), 134-160. https://doi.org/10.1080/08975930.2018.1480991
  22. Eversberg, L., and Lambrecht, J. (2023). Evaluating digital work instructions with augmented reality versus paper-based documents for manual, object-specific repair tasks in a case study with experienced workers. arXiv. https://doi.org/10.48550/arxiv.2301.07570
  23. Fagerholm, F. et al. (2022). Cognition in software engineering: A taxonomy and survey of a half-century of research. arXiv. https://doi.org/10.48550/arxiv.2201.05551
  24. Farzinnejad, F. et al. (2023). The effect of an exergame on the shadow play skill based on muscle memory for young female participants: The case of forehand drive in table tennis. arXiv. https://doi.org/10.48550/arxiv.2308.14404
  25. Geisen, M., and Klatt, S. (2021). Real-time feedback using extended reality: A current overview and further integration into sports. International Journal of Sports Science & Coaching, 17(5), 1178-1194. https://doi.org/10.1177/17479541211051006
  26. Geng, X., and Yamada, M. (2020). An augmented reality learning system for japanese compound verbs: Study of learning performance and cognitive load. Smart Learning Environments, 7(1). https://doi.org/10.1186/s40561-020-00137-4
  27. Golan, H., Parush, A., and Jaffe, E. (2020). Attention allocation to physically separate task and situation displays in a command and control setting. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64(1), 1130-1134. https://doi.org/10.1177/1071181320641271
  28. Herm, L. (2023). Impact of explainable ai on cognitive load: Insights from an empirical study. arXiv. https://doi.org/10.48550/arxiv.2304.08861
  29. Howden, T. et al. (2021). Enhancing reading strategies by exploring a theme-based approach to literature surveys. arXiv. https://doi.org/10.48550/arxiv.2102.05374
  30. Huang, H. et al. (2025). Differences in backcourt forehand clear stroke between novice players and experienced badminton players: Based on body segment acceleration data. BMC Sports Science, Medicine and Rehabilitation, 17(1). https://doi.org/10.1186/s13102-025-01163-w
  31. Hülsmann, F., Kopp, S., and Botsch, M. (2017). Automatic error analysis of human motor performance for interactive coaching in virtual reality. arXiv. https://doi.org/10.48550/arxiv.1709.09131
  32. Hung, M. et al. (2020). The applications of landing strategies in badminton footwork training on a backhand side lateral jump smash. Journal of Human Kinetics, 73(1), 19-31. https://doi.org/10.2478/hukin-2020-0002
  33. Jeffri, N. F. S., and Rambli, D. R. A. (2020). Guidelines for the interface design of ar systems for manual assembly. Proceedings of the 2020 4th International Conference on Virtual and Augmented Reality Simulations, 70-77. https://doi.org/10.1145/3385378.3385389
  34. Juliano, J. M., Schweighofer, N., and Liew, S. (2022). Increased cognitive load in immersive virtual reality during visuomotor adaptation is associated with decreased long-term retention and context transfer. Journal of NeuroEngineering and Rehabilitation, 19(1). https://doi.org/10.1186/s12984-022-01084-6
  35. Katzakis, N. et al. (2017). Stylo and handifact. Proceedings of the 5th Symposium on Spatial User Interaction, 58-67. https://doi.org/10.1145/3131277.3132181
  36. Keil, J. et al. (2020). Augmented reality (ar) and spatial cognition: Effects of holographic grids on distance estimation and location memory in a 3d indoor scenario. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(2), 165-172. https://doi.org/10.1007/s41064-020-00104-1
  37. Kittel, A. et al. (2020). Effectiveness of 360° virtual reality and match broadcast video to improve decision-making skill. Science and Medicine in Football, 4(4), 255-262. https://doi.org/10.1080/24733938.2020.1754449
  38. Kong, S. et al. (2025). Mindfulness, cognitive load, and performance: Examining the interplay of stress and self-regulation in physical education. BMC Psychology, 13(1). https://doi.org/10.1186/s40359-025-02794-x
  39. Kulkarni, C. et al. (2020). Designing an augmented reality based interface for wearable exoskeletons. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64(1), 38-41. https://doi.org/10.1177/1071181320641012
  40. Kumar, S. S., HV, P., and Nandini, C. (2022). A survey on the application of data science and analytics in the field of organised sports. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2209.07528
  41. Lin, T. et al. (2020). Sportsxr -- immersive analytics in sports. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2004.08010
  42. LoSarah, L. L. et al. (2021). Effects of attentional focus cues on lower extremity kinematics during inside of the foot soccer trap among expert soccer players. International Journal of Sports Science & Coaching, 16(4), 957-967. https://doi.org/10.1177/1747954121994691
  43. Luan, M., and Mirifar, A. (2021). The effect of attentional direction on sub-stages of preparing for motor skill execution across practice. Perceptual and Motor Skills, 128(3), 1292-1309. https://doi.org/10.1177/00315125211009026
  44. Ma, X. et al. (2021). The impact of ar-hud intelligent driving on the allocation of cognitive resources under the breakthrough of 5g technology. Journal of Physics: Conference Series, 1982(1), 012024. https://doi.org/10.1088/1742-6596/1982/1/012024
  45. Minaee, S., Liang, X., and Yan, S. (2022). Modern augmented reality: Applications, trends, and future directions. arXiv. https://doi.org/10.48550/arxiv.2202.09450
  46. Mokmin, N. A. M. et al. (2023). Impact of an ar-based learning approach on the learning achievement, motivation, and cognitive load of students on a design course. Journal of Computers in Education, 11(2), 557-574. https://doi.org/10.1007/s40692-023-00270-2
  47. Namli, S. et al. (2025). Virtual reality-supported video modeling for enhancing motor skill acquisition in swimming. BMC Sports Science, Medicine and Rehabilitation, 17(1). https://doi.org/10.1186/s13102-025-01241-z
  48. Nkurunziza, J. B. et al. (2021). Psycho-physiological impedance matching through holistic closed-loop cyber-physical systems. Proceedings of the 2021 Workshop on Future of Digital Biomarkers, 51-54. https://doi.org/10.1145/3469266.3471166
  49. Nor, N., Sunar, M., and Kapi, A. (2020). A review of gamification in virtual reality (vr) sport. EAI Endorsed Transactions on Creative Technologies, 6(21), 163212. https://doi.org/10.4108/eai.13-7-2018.163212
  50. Le Noury, P. J. et al. (2023). Xr programmers give their perspective on how xr technology can be effectively utilised in high-performance sport. Sports Medicine - Open, 9(1). https://doi.org/10.1186/s40798-023-00593-5
  51. Pietschmann, L. et al. (2023). Quantifying the impact of xr visual guidance on user performance using a large-scale virtual assembly experiment. arXiv. https://doi.org/10.48550/arxiv.2308.03390
  52. Pustišek, M. et al. (2019). The role of technology for accelerated motor learning in sport. Personal and Ubiquitous Computing, 25(6), 969-978. https://doi.org/10.1007/s00779-019-01274-5
  53. Salac, J. (2020). Diagramming as a strategy for primary/elementary-age program comprehension. Proceedings of the 2020 ACM Conference on International Computing Education Research, 322-323. https://doi.org/10.1145/3372782.3407116
  54. Schaefer, S., and Scornaienchi, D. (2019). Table tennis experts outperform novices in a demanding cognitive-motor dual-task situation. Journal of Motor Behavior, 52(2), 204-213. https://doi.org/10.1080/00222895.2019.1602506
  55. Schramm, R. C. et al. (2023). Assessing augmented reality selection techniques for passengers in moving vehicles: A real-world user study. arXiv. https://doi.org/10.48550/arxiv.2307.06173
  56. Schreiber, F., and Cramer, C. (2022). Towards a conceptual systematic review: Proposing a methodological framework. Educational Review, 1-22. https://doi.org/10.1080/00131911.2022.2116561
  57. Shearer, R. L., Yu, J., and Peng, X. (2020). Cognitive load and working memory: A system view of measurement. Learning: Research and Practice, 7(1), 54-69. https://doi.org/10.1080/23735082.2020.1830150
  58. Stalheim, O. R., and Somby, H. M. (2024). An embodied perspective on an augmented reality game in school: Pupil's bodily experience toward learning. Smart Learning Environments, 11(1). https://doi.org/10.1186/s40561-024-00308-7
  59. Sweller, J. (2019). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1-16. https://doi.org/10.1007/s11423-019-09701-3
  60. Tabassum, A., Bai, H., and Fala, N. (2023). A study on workload assessment and usability of wind-aware user interface for small unmanned aircraft system remote operations. arXiv. https://doi.org/10.48550/arxiv.2309.04543
  61. Vermander, P. et al. (2024). Intelligent systems for sitting posture monitoring and anomaly detection: An overview. Journal of NeuroEngineering and Rehabilitation, 21(1). https://doi.org/10.1186/s12984-024-01322-z
  62. Turmo Vidal, L., Márquez Segura, E., and Waern, A. (2018). Movement correction in instructed fitness training. Proceedings of the 2018 Designing Interactive Systems Conference, 1041-1054. https://doi.org/10.1145/3196709.3196789
  63. Wang, W. et al. (2023). Shuttleset: A human-annotated stroke-level singles dataset for badminton tactical analysis. arXiv. https://doi.org/10.48550/arxiv.2306.04948
  64. Wu, F. (2021). Construction of digital dynamic sports system platform based on vr technology. 2021 2nd International Conference on Computers, Information Processing and Advanced Education, 998-1002. https://doi.org/10.1145/3456887.3457449
  65. Wu, F. (2021). Construction of digital dynamic sports system platform based on vr technology. 2021 2nd International Conference on Computers, Information Processing and Advanced Education, 998-1002. https://doi.org/10.1145/3456887.3457449
  66. Wu, E. et al. (2019). How to vizski: Visualizing captured skier motion in a vr ski training simulator. Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry, 1-9. https://doi.org/10.1145/3359997.3365698
  67. Zhao, Z. et al. (2023). A survey of deep learning in sports applications: Perception, comprehension, and decision. arXiv. https://doi.org/10.48550/arxiv.2307.03353
  68. Zhou, X., and Zhao, J. (2022). Mobile augmented reality with federated learning in the metaverse. arXiv. https://doi.org/10.48550/arxiv.2212.08324